Improving Colonoscopy Lesion Classification Using Semi-Supervised Deep Learning
نویسندگان
چکیده
منابع مشابه
Improving Semi-Supervised Learning with Auxiliary Deep Generative Models
Abstract Deep generative models based upon continuous variational distributions parameterized by deep networks give state-of-the-art performance. In this paper we propose a framework for extending the latent representation with extra auxiliary variables in order to make the variational distribution more expressive for semi-supervised learning. By utilizing the stochasticity of the auxiliary var...
متن کاملLearning a Deep Hybrid Model for Semi-Supervised Text Classification
We present a novel fine-tuning algorithm in a deep hybrid architecture for semisupervised text classification. During each increment of the online learning process, the fine-tuning algorithm serves as a top-down mechanism for pseudo-jointly modifying model parameters following a bottom-up generative learning pass. The resulting model, trained under what we call the Bottom-Up-Top-Down learning a...
متن کاملSemi-supervised deep kernel learning
Deep learning techniques have led to massive improvements in recent years, but large amounts of labeled data are typically required to learn these complex models. We present a semi-supervised approach for training deep models that combines the feature learning capabilities of neural networks with the probabilistic modeling of Gaussian processes and demonstrate that unlabeled data can significan...
متن کاملImproving Human Activity Classification through Online Semi-Supervised Learning
Built-in sensors in most modern smartphones open multiple opportunities for novel context-aware applications. Although the Human Activity Recognition field seized such opportunity, many challenges are yet to be addressed, such as the differences in movement by people doing the same activities. This paper exposes empirical research on Online Semi-supervised Learning (OSSL), an under-explored inc...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2020.3047544